January 7, 2014

Cover Story

CEO of the Year

Utah’s business landscape is rich with professionals who have le...Read More

Featured Articles

Did you go Skiing this winter?

Around Utah

Sections

Spotlight
Martin Plaehn

Spotlight
Karen Sendelback

Legal Briefs
Social Media and Employers: Friends or Enemies?

Money Talk
The Case for HSAs

Economic Insight
Time to Show Up

Lessons Learned
Make a Move

TechKnowledge
In the Lab

EntrepreneurEdge
Rent to Own

Business Trends
Back from the Dead

Executive Living
Artful Inspiration

Features
A Breath of Fresh Air

Features
Worst-Case Scenario

Regional Report
Northern Utah

Focus
Measure Up

Industry Outlook
Travel & Tourism

Players
Players

Article

Bingham Canyon Mine Landslide Triggered Several Small Quakes

Press Release

January 7, 2014


Last year’s landslide at a Utah copper mine was most likely the biggest nonvolcanic slide in North America’s modern history, and included two rock avalanches that happened 90 minutes apart and surprisingly triggered 16 small earthquakes, University of Utah scientists discovered.

The landslide, which moved at an average of almost 70 mph and reached estimated speeds of at least 100 mph, left a deposit so large it “would cover New York’s Central Park with about 20 meters (66 feet) of debris,” the researchers report in the January 2014 cover study in the Geological Society of America magazine GSA Today.

While earthquakes regularly trigger landslides, the gigantic landslide the night of April 10, 2013, is the first known to have triggered quakes. The slide occurred in the form of two huge rock avalanches at 9:30 p.m. and 11:05 p.m. at Rio Tinto-Kennecott Utah Copper’s open-pit Bingham Canyon Mine, 20 miles southwest of downtown Salt Lake City. Each rock avalanche lasted about 90 seconds.

While the slides were not quakes, they were measured by seismic scales as having magnitudes up to 5.1 and 4.9, respectively. The subsequent real quakes were smaller.

Kennecott officials closely monitor movements in the 107-year-old mine, which produces 25 percent of the copper used in the United States, and they recognized signs of increasing instability in the months before the slide, closing and removing a visitor center on the south edge of the 2.8-mile-wide, 3,182-foot-deep open pit, which the company claims is the world’s largest manmade excavation.

Landslides, including those at open-pit mines but excluding quake-triggered slides, killed more than 32,000 people during 2004-2011, the researchers say. But no one was hurt or died in the Bingham Canyon slide. The slide damaged or destroyed 14 haul trucks and three shovels and closed the mine’s main access ramp until November.

“This is really a geotechnical monitoring success story,” said the new study’s first author, Kris Pankow, associate director of the University of Utah Seismograph Stations and a research associate professor of geology and geophysics. “No one was killed, and yet now we have this rich dataset to learn more about landslides.”

There have been much bigger human-caused landslides on other continents and much bigger prehistoric slides in North America, including one about five times larger than Bingham Canyon some 8,000 years ago at the mouth of Utah’s Zion Canyon.

But the Bingham Canyon Mine slide “is probably the largest nonvolcanic landslide in modern North American history,” said study co-author Jeff Moore, an assistant professor of geology and geophysics at the University of Utah.

There have been numerous larger, mostly prehistoric slides—some hundreds of times larger. Even the landslide portion of the 1980 Mount St. Helens eruption was 57 times larger than the Bingham Canyon slide.

News reports initially put the landslide cost at close to $1 billion, but that may end up lower because Kennecott has gotten the mine back in operation faster than expected.

Until now, the most expensive U.S. landslide was the 1983 Thistle slide in Utah, which cost an estimated $460 million to $940 million because the town of Thistle was abandoned, train tracks and highways were relocated and a drainage tunnel built.

Pankow and Moore conducted the study with several colleagues from the university’s College of Mines and Earth Sciences: J. Mark Hale, an information specialist at the Seismograph Stations; Keith Koper, director of the Seismograph Stations; Tex Kubacki, a graduate student in mining engineering; Katherine Whidden, a research seismologist; and Michael K. McCarter, professor of mining engineering.

The study was funded by state of Utah support of the University of Utah Seismograph Stations and by the U.S. Geological Survey.

Rockslides Measured up to 5.1 and 4.9 in Magnitude, but Felt Smaller

The University of Utah researchers say the Bingham Canyon slide was among the best-recorded in history, making it a treasure trove of data for studying slides.

Kennecott has estimated the landslide weighed 165 million tons. The new study estimated the slide came from a volume of rock roughly 55 million cubic meters (1.9 billion cubic feet). Rock in a landslide breaks up and expands, so Moore estimated the landslide deposit had a volume of 65 million cubic meters (2.3 billion cubic feet).

Moore calculated that not only would bury Central Park 66 feet deep, but also is equivalent to the amount of material in 21 of Egypt’s great pyramids of Giza.

The landslide’s two rock avalanches were not earthquakes but, like mine collapses and nuclear explosions, they were recorded on seismographs and had magnitudes that were calculated on three different scales:

Page 12
Utah Business Social
UB Events View All
Community Events View All
Why sales people fail and what you can do about it!
Aug 29, 2014
Learn how to take a non-traditional approach using the Sandler Sales System that allows the sales...
Used Car Show in - Salt lake City - Clearfield in September
Sep 1, 2014
Visit Us at Our Two Location's We have Show of Old Cars, New Cars, used Cars. You Can Exchange or...

info@utahbusiness.com  |  90 South 400 West, Ste 650 Salt Lake City, Utah 84101   |  (801) 568-0114

Advertise with Utah Business

Submit an Event

* indicates required information
* Event Name:
Price (general):
Website (if applicable):
Coordinator's Name:
Coordinator's Email:
Coordinator's Phone:
Venue Name:
Venue Address:
Venue City:
Venue Zip:
Event Capacity:
Date(s):
to
* Event Description:
  Cancel